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Static populations versus dynamical ones

Static = well defined cell-type/clusters Dynamic = definition of clusters is blurred
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Concept of pseudotime ordering
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How do we apply this to scRNAseq data?

• scRNAseq is highly noisy data
• Amplification bias
• Library size differences
• Sequencing depth
• Biology is stochastic and noisy by itself!

• But the good news is that transcriptional activity 
happens in modules composed numerous genes
• Latent structure exists at a much lower dimension

Additional processing steps are required to “denoise” 
and extract the latent structure of the data













Denoising data: PCA

Obtain covariance matrix A
of size 𝑛 × 𝑛

eigen decompose A 
by diagonalizing: 

Important! 
• We have decomposed our data into linear transformations with:

• the eigenvectors being the "axes" or the "directions“
• the eigenvalues being the scaling factors

• Each eigenvector has its own eigenvalue
• By choosing a reduced number among the top eigenvalues, we subset our 

eigenvectors columns which becomes our reduced dimensions!

In this case, dimensions are principal components

𝑨 = 𝑿𝑫𝑿−𝟏

Highly dimensional data
n samples
m features

D is a diagonal matrix 
made of eigenvalues

𝜆1 0 0
0 𝜆2 0
0 0 𝜆𝑛

Eigenvalues are found by 
solving 𝐴 − 𝜆𝐼 = 0
where I is an identity matrix

X is a matrix with 
each columns being 
eigenvectors of A

Eigenvector 𝑥𝑛 are found by 

solving 𝐴 − 𝜆𝐼 𝑥𝑛 = 0 for 
each eigenvalues 𝜆𝑛 previously 
found.



Denoising data: PCA
“Highly” dimensional data
20 samples
3 features

Obtain covariance matrix A
of size 𝑛 × 𝑛

eigen decompose A 
by diagonalizing: 
𝑨 = 𝑿𝑫𝑿−𝟏

Select reduced dimensions

*the two last columns can be 
accessed via -2 and -1

*data is scaled to remove the  effect of the 
magnitude of the variables

https://github.com/LouisFaure/Trajectory_Inference_worksh
op/blob/main/01.%20Eigen-decomposition.ipynb

https://github.com/LouisFaure/Trajectory_Inference_workshop/blob/main/01.%20Eigen-decomposition.ipynb


Pseudotime: recovering lost time information



Considering our video as our “count matrix” 

Known time category

column = one pixel = “gene”

row = one frame = “cell”
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https://github.com/LouisFaure/Trajectory_Inference_workshop/blob/main/02.%20Trajectory%20inference%20on%20a%20video.ipynb

https://github.com/LouisFaure/Trajectory_Inference_workshop/blob/main/02.%20Trajectory%20inference%20on%20a%20video.ipynb


Dimensionality reduction methods help 
revealing dynamical axis

Running PCA on scaled values Infer a principal graph in PCA space

https://github.com/LouisFaure/Trajectory_Inference_workshop/blob/main/02.%20Trajectory%20inference%20on%20a%20video.ipynb

https://github.com/LouisFaure/Trajectory_Inference_workshop/blob/main/02.%20Trajectory%20inference%20on%20a%20video.ipynb


ElPiGraph

Albergante et al. (2019), Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph, Entropy.

https://doi.org/10.3390/e22030296


Dimensionality reduction methods help 
revealing dynamical axis

Running PCA on scaled values Infer a principal graph in PCA space

https://github.com/LouisFaure/Trajectory_Inference_workshop/blob/main/02.%20Trajectory%20inference%20on%20a%20video.ipynb
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Pseudotime consists in reordering the cells 
along an inferred trajectory

Root

https://github.com/LouisFaure/Trajectory_Inference_workshop/blob/main/02.%20Trajectory%20inference%20on%20a%20video.ipynb

https://github.com/LouisFaure/Trajectory_Inference_workshop/blob/main/02.%20Trajectory%20inference%20on%20a%20video.ipynb


Recovered time! Yay!



Denoising scRNAseq data: beyond PCA

PCA Distance matrix

Knn graph

Knn graphpairwise distances



Denoising scRNAseq data: beyond PCA

PCA Distance matrix

Knn graph + clustering

Knn graphpairwise distances



Denoising developmental scRNAseq data

PCA Distance matrix

Knn graph

Knn graphpairwise distances

Start cell



Denoising developmental scRNAseq data

PCA Distance matrix

Knn graph

Random walk following a time 
dependent diffusion process, 
constrained by a gaussian kernel

Start cell

n × n Markovian 
transition probability matrixDiffusion maps

Knn graphpairwise distances

Eigen decomposition

Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. 
Bioinformatics (2015) doi:10.1093/bioinformatics/btv325.



Trajectory inference in scRNAseq

Neighbors graph
sc.pp.neighbors

Generate
embedding
sc.tl.umap

Infer principal graph
scf.tl.tree
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Trajectory inference in scRNAseq

Neighbors graph
sc.pp.neighbors

Project 
principal graph
scf.pl.graph

Generate
embedding
sc.tl.umap

Generate
embedding
sc.tl.draw_graph

Diffusion maps
sce.tl.palantir

Neighbors graph
sc.pp.neighbors

Infer principal graph
scf.tl.tree

Project 
principal graph
scf.pl.graph



tSNE? UMAP? ForceAtlas2?

Must read! 
https://arxiv.org/pdf/2007.08902.pdf

https://arxiv.org/pdf/2007.08902.pdf


Selecting the root

Use the help from:
• Experimental knowledge (sampling timepoint)
• Biological knowledge (known progenitor markers)



Need help finding the root?

Edited from: Lederer, A. R. & La Manno, G. The emergence and promise 
of single-cell temporal-omics approaches. Current Opinion in 
Biotechnology (2020). doi:10.1016/j.copbio.2019.12.005

CytoTRACE RNA Velocity

Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of 
developmental potential. Science (80-. ). (2020) doi:10.1126/science.aax0249.



Recover the dynamics



Bifurcation point
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Differential gene expression
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Late gene modules
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Post-bifurcation activation

Probing bifurcations



Early gene modules
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Probing bifurcations

https://scfates.readthedocs.io/en/latest/notebooks/Ad
vanced_bifurcation_analysis.html#Bifurcation-analysis

https://scfates.readthedocs.io/en/latest/notebooks/Advanced_bifurcation_analysis.html#Bifurcation-analysis


scFates
Github repo: github.com/LouisFaure/scFates
Documentation: scfates.readthedocs.io
Package: pypi.org/project/scFates

Reproducibility: https://github.com/LouisFaure/Trajectory_Inference_workshop/

Thank you for listening!

Soldatov et al. (2019), Spatiotemporal structure of cell fate decisions in murine neural crest, Science.

https://github.com/LouisFaure/scFates
scfates.readthedocs.io
https://pypi.org/project/scFates
https://github.com/LouisFaure/Trajectory_Inference_workshop/
https://doi.org/10.1126/science.aas9536

